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Abstract 

Severe wind gusts and thunderstorms have been difficult to forecast in Africa. 
Traditional convective forecast tools (e.g., Total Totals Index, Lifted Index, K Index 
(KI) and Convective Available Potential Energy) do not accurately portray potential 
for thunderstorms in Africa. To increase forecast accuracy for thunderstorms in 
northern Africa, this research effort used the Gálvez-Davison Index (GDI), a 
convective index created for the tropics, and assessed its applicability to northern 
Africa. GDI was produced for the Caribbean and Central America, and utilizes 
temperature, moisture, mid-level stability, dry air entrainment and an elevation factor 
to calculate convective potential. As such, these characteristics make GDI especially 
useful for forecasting thunderstorms in the tropics. In this research, GDI and KI were 
calculated using National Center for Environmental Prediction (NCEP) Global 
Forecast System (GFS) reanalysis data. K-means clustering was used to conduct an 
error analysis on both indices and the resulting location and area error values. These 
error values were then bootstrapped and confidence intervals were calculated using 
the bias-corrected and accelerated method.  

 Results indicate GDI and KI have similar location error in both the intra-annual 
and intra-seasonal studies. In comparison with KI, GDI had lower area error values in 
the intra-annual study and in most convective synoptic cases with 95% confidence.  
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A NEW ANALYSIS OF THE GÁLVEZ-DAVISON INDEX FOR CONVECTIVE 
FORECASTS IN NORTHERN AFRICA 

 
I.  Introduction 

General Issue 

Forecasting convective weather on the African continent remains one of the most 

difficult challenges in meteorology. Due to numerous limiting factors, forecasters cannot 

accurately predict the weather to the degree of specificity that can be achieved in other 

areas of the world. Africa is a sparse region when it comes to quality environmental data, 

which creates many challenges for weather forecasting. Additionally, the dynamics of 

some weather phenomena remains unclear. For these and other reasons, forecasting 

weather in Africa remains a formidable task. One major challenge when forecasting 

environmental conditions in Africa is predicting convective storms with high winds and 

precipitation.  

Forecasters use convective indices to aid in predicting thunderstorms. These 

indices utilize various parameters from real-time or modeled atmospheric soundings to 

gauge the probability of convective weather occurring. Common convective indices 

include: Lifted Index (LI), Showalter Stability Index (SSI) and the Total Totals Index 

(TTI). The K index (KI), which will be investigated further in Chapter II, is regarded as a 

quality index for tropical regions (Gálvez and Davison 2016). Unlike North America 

where LI, SSI and TTI are widely accepted as forecast standards to predict 

thunderstorms, currently no such standard exists for Africa. Common indices can be used 

over northern Africa, but not with the same level of confidence.  
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The area of interest for this research is northern Africa, specifically 0°-20°N 

latitude and 20°W-50°E longitude (Figure 1.1).  

 
Figure 1.1: The blue rectangle outlines the region of interest, 0°-20°N latitude and 

20°W-50°E longitude.  
 

National Oceanic and Atmospheric Administration (NOAA) researchers, Gálvez 

and Davison (2016), have recently developed a new convective index tailored for the 

Caribbean and Central America. Validation studies have been conducted and variations 

have been made to tailor their Gálvez-Davison Index (GDI) for Costa Rica, South 

America and even South Korea (Omar Nava, Air Force Institute of Technology, written 

communication 13 July 2017). The purpose of this research is to assess and compare the 

forecasting skill of both GDI and KI for northern Africa.  

Problem Statement 

Current forecasting techniques for predicting convection in northern Africa are 

based on indices created with meteorological understanding and weather data from other 
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parts of the world. Thus far, there is no solid convective index tailored specifically for 

northern Africa. Consequently, forecasters cannot place sufficient confidence in 

predicting high winds, lightning or precipitation associated with convective activity.  

Hypotheses  

 GDI will portray convection over northern Africa more accurately than KI. This is 

due to the nature of the GDI proven to work well for tropical regions, as it considers 

parameters important to tropical convection (Gálvez and Davison 2016). A new index 

should consider the parameters in GDI with some adjustments and possibly additional 

terms to account for the differences between Central America and the Caribbean and 

northern Africa.  

Research Objectives, Focus and Questions 

The research objectives are as follows:  

1. Replicate GDI algorithm in Matlab, mapping out the index over northern 

Africa exactly as displayed on the NOAA website 

(http://www.wpc.ncep.noaa.gov/international/gdi/) 

2. Replicate KI in Matlab, mapping out the index over northern Africa 

3. Assess the skill of both indices for Africa by comparing forecasts with 

lightning data and satellite imagery, statistically analyzing their skill in 

predicting convection over northern Africa 

4. Modify GDI into new GDIs for Africa (GDI-As) considering the differences 

in the regions they are targeting: the Caribbean and northern Africa 
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respectively; adjust the parameters within GDI and/or add new terms to 

modify the into GDI-As 

5. Assess the skill of the GDI-As for Africa by comparing forecasts with 

lightning data and satellite imagery, statistically analyzing their skill in 

predicting convection over northern Africa 

 

Research questions for investigation:  

- How well does GDI predict convection over northern Africa, spatially, 

temporally and intensity-wise?  

- What makes GDI work well for tropical regions? What makes it especially 

accurate over Central America and the Caribbean?  

- Does GDI need improvement for forecasting over northern Africa, and if so, 

how? Are the same parameters in GDI applicable to GDI-A? What additional 

parameters, if any, need to be considered for northern Africa?  

- How well does the new GDI-A work over northern Africa, spatially, 

temporally and intensity-wise? Why does it work better than GDI in this 

region?  

- Does GDI-A improve confidence when forecasting convection over northern 

Africa?  

Assumptions/Limitations 

The data for this research is the Global Forecast System (GFS) reanalysis model 

data, as further explained in Chapter III. Although this data is not perfectly representative 
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of the true atmospheric conditions, it is the most realistic depiction of the atmosphere 

(UCAR 2014). Limitations of this data are the vertical and horizontal resolutions of the 

model. In the vertical, model data points are set at the surface, 1000 mb, 975 mb, 950 mb, 

925 mb and 900 mb, and then every 50 mb above that until 100 mb (UCAR 2017). 

Increased emphasis is put on the lower levels, with several more layers represented than 

in the upper levels. Horizontal resolution is 1° by 1° of latitude and longitude, where 1° is 

approximately 111 km or 69 miles in northern Africa (UCAR 2017). Convection 

processes occur on smaller scales than the vertical and horizontal resolutions of the 

model data, as further explained in Chapter II.  

Furthermore, since the forecast model data was mapped onto a 1° by 1° grid, each 

point is assessed to see if the forecast correctly identified lightning to occur. Two 

problems arise during this process. Of note, lightning rarely strikes at whole latitude and 

longitude degree values; instead the lightning strikes are scattered at various locations 

with fractional degree values of both latitude and longitude. This is problematic when 

comparing index values with truth, attempting to match model output data at whole 

degree values with sporadic lightning strikes. Moreover, interpretation of forecast index 

values indicating various levels of convective potential was subjective. Because of these 

two issues, a clustering method is used, not point-by-point analysis.   

Another limitation is the independence of error in the samples. Model error 

carries over from one six-hour run to the next. In the field of meteorology, 24 hours is 

often the effective time between independent samples (Miller 1962). However, in this 

study, the samples are six hours apart. This is to maximize the use of available GFS 

reanalysis data and lightning observations.  
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Implications 

With a new index for predicting convection over northern Africa, the confidence 

and specificity of forecasts in the region could increase greatly. Improving forecasting 

abilities will aid users in overcoming the challenges of predicting the extent, timing and 

intensity of convection over northern Africa. Increasing environmental situational 

awareness could contribute to a better understanding of the overall weather patterns and 

severe weather phenomenon in Africa and ultimately promote further knowledge of its 

role in the Earth’s climate system and agriculture.  

Preview 

The organization of this thesis is as follows: Chapter II describes the past research 

on tropical convection and a background on African thunderstorms; Chapter III describes 

the background on data and methodology for this research; Chapter IV presents and 

analyses the results; Chapter V discusses how the results of this research impact the 

usefulness and influence of GDI and GDI-A when forecasting convection in Africa and 

concludes this research by presenting recommendations for future work in this field.  
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II. Background on African Thunderstorms and Literature Review 

Chapter Overview 

The purpose of this chapter is to lay out the foundation of current research and 

background on convection patterns over northern Africa. This information is critical to 

fully understanding the research findings and conclusions in later chapters.  

African Thunderstorms 

 Research on thunderstorm activity focuses on convective initiation and life-cycle 

forcing in the mid-latitudes. Common convective indices from Chapter I forecast for mid-

latitude convection because of the research focus in meteorology on these regions due to 

data availability, social and economic welfare. Similar research on convection in tropical 

regions could add to the knowledge base of global weather patterns and climatology.  

 Tropical convection varies in many ways from mid-latitude convection. First, 

latent heat release initiates and fuels convection in the tropics and available potential 

energy from strong temperature gradients drives convection in the mid-latitudes (Holton 

and Hakim 2013). Since most of the latent heat release in the tropics is from convective 

systems, thunderstorms upstream are an indicator of increased convective potential 

(Gálvez and Davison 2016). Overall, frontal movements, boundaries between airmasses, 

resulting from strong temperature gradients primarily cause mid-latitude convection, 

while large-scale circulations and latent heat release drive convection in the tropics. 

These large-scale circulations include the Hadley cell, the Intertropical Convergence 

Zone (ITCZ) and the Walker circulation.  
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 Uneven heating on the earth’s surface gives rise to the large-scale circulations in 

the atmosphere. The dominant circulation in tropical regions is the Hadley cell where 

trade winds in both hemispheres converge near the equator, causing air to rise (Holton 

and Hakim 2013). The Hadley cell is a main driver of heat transport from the equator 

poleward. Rising air transports heat from the surface to upper atmosphere through 

pseudoadiabatic ascent and formation of cumulonimbus clouds (Holton and Hakim 

2013). These clouds form a discontinuous band of deep convection circling the globe 

along the meteorological equator called the Intertropical Convergence Zone or ITCZ 

(Galvin 2016). The location of the ITCZ moves north and south following the most direct 

solar radiation on the earth’s surface. Vapor supplies required for this large scale 

convective circulation come from converging trade wind flow, providing the latent heat, 

and energizing persistent convection in the ITCZ (Holton and Hakim 2013).  

  Persistent convection in the ITCZ promotes another large-scale circulation in the 

atmosphere¾the Walker circulation (Holton and Hakim 2013). This feature is the zonal 

movement of air along the equatorial region of the globe. This circulation is important to 

discussions and research on El Niño and Southern Oscillation in regards to disruptions in 

the prevailing patterns.  

 Tropical waves are features that promote convection in the tropics. When air rises 

in columns of convective clouds in the ITCZ upper level divergence occurs and, by mass 

continuity, low level convergence also occurs, forming tropical waves (Holton and 

Hakim 2013). Latent heat release from convective precipitation propels these weak 

disturbances in the ITCZ westward. (Holton and Hakim 2013). Perturbations in the 

easterly trade winds or 24-hour surface pressure changes identify the location of tropical 
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waves (Kirshnamurti et al. 2013). Waves that move off the African continent and into the 

Atlantic Ocean are important phenomena in the genesis of tropical cyclones 

(Kirshnamurti et al. 2013).  

 There are three main forms convection takes over northern Africa: 1) African 

easterly waves, 2) airmass thunderstorms and 3) mesoscale convective systems. Over the 

continent of Africa, unique processes occur in the atmosphere that generate specific types 

of tropical waves, African easterly waves (AEWs). During the summer in the Northern 

Hemisphere, intense surface heating in the Sahara Desert induces a strong positive 

temperature gradient between the equator and 25°N (Holton and Hakim 2013). This 

strong temperature gradient causes the African easterly jet (AEJ) to form at 

approximately 13-16°N with its core at 650 mb (Holton and Hakim 2013). Monsoonal 

flow and the lower Walker circulation induce westerly flow at approximately 10°N with 

its core at 950 mb. This set-up creates a cyclonic shear zone that promotes the initiation 

and propagation of synoptic-scale tropical waves (Holton and Hakim 2013). These AEWs 

depend more on the barotropic and baroclinic conversions of energy from the AEJ as 

opposed to latent heat release (Holton and Hakim 2013). High winds at 650 mb indicate 

the location of the AEJ (Figure 2.1).  

 
Figure 2.1: The blue arrow highlights a portion of the AEJ at 650 mb.  
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 AEWs have distinct characteristics. They can range from 1,500-4,500 km, 

averaging around 2,500 km in length from north to south (Kirshnamurti et al. 2013). 

Lasting for 3-5 days, they travel at approximately 8 ms-1 or 5-7° longitude per day. 

Originating somewhere between 15-30°E, they reach their maximum amplitude anywhere 

from 10°E -20°W longitude, over West Africa or the coast. Ahead of the waves are 

northeasterly winds, low level divergence and sinking air while behind them are 

southeasterly winds, low level convergence and rising air (Kirshnamurti et al. 2013). 

Since this region is an easterly shear environment, convection is on the west side of the 

AEW axis. Although AEWs can generate convection, this is the least prominent form 

convection takes over northern Africa.  

 Convection can often be in the form of airmass thunderstorms in both the tropics 

and mid-latitudes. These are small columns of air that rise once daytime heating warms 

the surface past the convective temperature. Without the need for any mechanical forcing, 

air rises, moisture condenses and small, localized thunderstorms form. These systems 

range in size from a radius of 1° of latitude, near the equator approximately 111 km, and 

smaller. Most of these systems are smaller than 1° by 1° (Figure 2.2).  

 
Figure 2.2: The yellow rectangle highlights airmass thunderstorms on an infrared satellite 

image from 27 September 2017 at 1500Z (NRL 2017). 
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Another source of convection in Africa is mesoscale convective systems (MCSs). 

MCSs are larger groupings of convective activity on a broader scale than independent 

smaller convective storms. MCSs are a cloud region at -52°C or colder covering a 

minimum of 30,000 km2 (Jirak et al. 2003). They have strong vertical velocities, large 

amounts of precipitation and large areas of cold cloud tops (Figure 2.3; Kirshnamurti et 

al. 2013). Over northern Africa there is a prime environment especially conducive to the 

formation and maintenance of these MCSs with the tropical easterly jet (TEJ), at 

approximately 7°N and 175mb, and the AEJ, at approximately 13-16°N and 650mb 

(Figure 2.4). The anticyclonic shear side of the TEJ in the upper levels overlays the 

cyclonic shear side of the AEJ in the mid-levels, inducing convergence in the low levels 

and divergence in the upper levels. This environmental set-up is favorable for the 

development and maintenance of convection. Nearly all squall line systems in West 

Africa have been observed in this ideal environment between the TEJ and AEJ.  

 

 

Figure 2.3: Yellow rectangles highlight MCSs on an infrared satellite image from 
25 August 2017 at 0000Z (NRL 2017). 
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Figure 2.4: The locations of the prominent wind features, the African easterly jet (AEJ) at 

approximately 650 mb and the tropical easterly jet (TEJ) at approximately 175 mb.   
 
 

There are other factors that can contribute to the ideal conditions in northern 

Africa for thunderstorms. During summer in the Northern Hemisphere there is warm, 

moist southwestern monsoonal flow in the low levels over northwestern Africa that is 

capped by dry easterly mid-level flow (Kirshnamurti et al. 2013). With a steady supply of 

heat and moisture at the surface, the shear environment is prime for thunderstorm 

development as the surface air rises into the mid-levels. Often convection on a smaller 

scale will dissipate once surface heating ceases. However, MCSs can form and enhance 

at night due to cooling cloud tops, promoting higher development in the atmosphere.  

Relevant Research 

The K Index 

The K index is currently considered the index of choice for the tropics because it 

is targeted for forecasting airmass thunderstorms instead of convection from frontal 

systems or orographic lift (George 1960). It was created to forecast airmass 
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thunderstorms over the north central plains. A critical difference between K and the other 

common indices is the consideration of 700 mb moisture in the K index. Computing the 

K index is done using Equation 2.1:  

𝐾𝐼 = 850𝑚𝑏	𝑇 − 500𝑚𝑏	𝑇 + 850𝑚𝑏	𝑇𝑑 − 700𝑚𝑏	𝑇 − 700𝑚𝑏	𝑇𝑑 					(2.1)	 

where T is the air temperature and Td is the dewpoint temperature. KI is unique in its 

inclusion of 700 mb dewpoint depression, which incorporates “buoyancy and dry air 

entrainment in the tropical mid-troposphere” (Gálvez and Davison 2016). The values of 

the KI determine convective potential (Table 2.1). Since the KI is strictly used to forecast 

airmass thunderstorms, any lower atmosphere (below 700 mb) convergence (divergence) 

will increase (decrease) the frequency of thunderstorms (George 1960). The KI 

calculation does not include convergence or divergence; therefore, a forecaster must take 

these processes into consideration (George 1960).  

Table 2.1: K values and their respective thunderstorm frequency estimates (George 
1960). 

 
 

 Considering the strength of the KI in forecasting airmass thunderstorms, its 

weaknesses in regards to tropical environments include “low variability in shallow 

convective regimes, […] and the disregard of thermodynamic properties below 850 mb” 

(Gálvez and Davison 2016). The K index neglects important factors for determining the 
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contribution of stability and moisture below 850 mb, which are important for tropical 

convection.  

The Gálvez-Davison Index 

The most imperative past research for study is the creation of the Gálvez-Davison 

Index (GDI) for tropical convection (Gálvez and Davison 2016). GDI is a new index that 

fills the gap in knowledge left by common convective indices lack of skill and accuracy 

in tropical regions.  

GDI was built on knowledge of tropical convection and is specifically tailored for 

forecasting such events. It has four main components: equivalent potential temperature 

proxies core index (ECI), mid-level warming index (MWI), inversion index (II), and 

surface pressure correction for elevation (Co). GDI considers factors from three different 

layers in the atmosphere to calculate these components (Figure 2.5).  

 
Figure 2.5: A model depiction of the layers in the GDI algorithm to predict 

convective potential (Gálvez and Davison 2016).  
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Equivalent Potential Temperature Proxies Core Index (ECI) 

 Equivalent potential temperature (EPT) is a quantity that encompasses both 

temperature and moisture in the air (Gálvez and Davison 2016). EPT can indicate 

“column moisture and potential release of latent heat” (Gálvez and Davison 2016). 

Higher EPT values are more favorable for convection, and a slow decrease with height is 

favorable for deep convection. Layer A was set at 950 mb to capture the characteristics of 

the boundary layer, since 925 mb proved be too high at times. The air temperature at the 

lifted condensation level (LCL) should be used when calculating the EPT. However, in 

order to simplify the calculations of EPT, GDI uses air temperatures at 850 mb, instead of 

the LCL air temperature.  

Important factors to consider when forecasting tropical convection include 

moisture and trade wind inversions (TWIs). In the tropics, moisture is mainly a product 

of foregoing convection (Gálvez and Davison 2016). A feedback mechanism of moisture 

and convection indicates upstream convection could be a predictor for convection at the 

local site (Gálvez and Davison 2016). Another tropical phenomenon important for 

convection is the TWI, which is a minor decrease in lapse rate or a small increase in 

temperature with height. It is caused by subsidence from the descending air in the Hadley 

cell. Convective development depends on the strength and height of these inversions. 

Stronger and lower inversions will inhibit vertical development, while some growth can 

occur with weaker and higher inversions. Regions with ample moisture and limited 

inhibiting TWIs are prime for the development of convection.  

Calculating the equivalent potential temperature proxy (EPTP) term for the GDI 

consists of incorporating ETPs from all three layers, A, B, and C.  
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𝜃5 = 	𝜃678 = 	𝑇678 1000/950 ; <																																																																																										(2.2) 

𝜃= = 	0.5 𝜃>78 +	𝜃<88 = 	0.5 𝑇>78 1000/850 ; < +	𝑇<88 1000/700 ; < 												(2.3) 
 

𝜃@ = 	𝜃788 = 	𝑇788 1000/500 ; <																																																																																									(2.4) 
 

Final EPTP values are calculated using the ETPs above in the following manner:  

𝐸𝑃𝑇𝑃5 = 	𝜃5𝑒
EFGHIJ
KLMNOIJ 																																																																																																															(2.5) 

𝐸𝑃𝑇𝑃= = 	𝜃=𝑒
EF∗(8.7(GOIJQGRJJ))

KLMNOIJ 			+	∝ 																																																																																	 (2.6) 

𝐸𝑃𝑇𝑃@ = 	𝜃@𝑒
EFGIJJ
KLMNOIJ 	+	∝ 		.																																																																																																		 (2.7) 

In the equations above, the r values are all the mixing ratios at the specified levels, the 

empirical adjustment constant ∝	= 	−10	[𝐾], the latent heat constant 𝐿X = 2.69 ∗

10Y 	 Z
[\

, and the specific heat of dry air at constant pressure  𝑐^_ = 1005.7	 Z
[\	`

.  

 Finally, a mid-level EPTP (ME) and a low-level EPTP (LE) determine the value 

of the ECI.  

𝑀𝐸 =	𝐸𝑃𝑇𝑃@ − 	𝛽																																																																																																																					(2.8) 

𝐿𝐸 = 	𝐸𝑃𝑇𝑃5 − 	𝛽																																																																																																																							(2.9) 

In the equations above, 𝛽 = 303	[𝐾] and is an empirical constant. The final ECI is 

calculated using Equation 2.10 below.  

𝐸𝐶𝐼 = 	 𝛾 ∗ (𝐸𝑃𝑇𝑃5 − 	𝛽) ∗ (𝐸𝑃𝑇𝑃@ − 	𝛽), 𝐿𝐸 > 0
0, 𝐿𝐸 ≤ 0																																															(2.10) 

In Equation 2.10, 𝛾 = 6.5 ∗ 10h;[𝐾hi] is an empirical scaling constant. Convective 

potential increases based on the difference between EPTPA and EPTPC and the b 

threshold. The GDI examines the 500 mb (Layer C) and 950 mb (Layer A) levels to 
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identify heat and moisture at the low and mid-levels. If both levels have significant 

amounts of heat and moisture, the whole column of air should be sufficiently warm and 

moist, favorable for convection.  

Mid-Level Warming Index (MWI) 

 The MWI is a factor within the GDI that quantifies the stability change in the 

mid-levels based on temperatures at 500 mb. It identifies whether the presence of a warm 

ridge is increasing stability and inhibiting convection or a cool trough is decreasing 

stability and aiding convection growth. This index relies on the 500 mb air temperature 

departure from t	 = 	263.15	[K]	(~	− 10°C). If the 500 mb temperature is warmer than 

t, then the MWI is negative and decreases the magnitude of GDI. If the 500 mb 

temperature is cooler than t, there is no contribution from MWI to the final GDI. MWI is 

only included when it indicates convection will be inhibited due to warmer mid-level air.  

𝑀𝑊𝐼 = 	 µ ∗ (𝑇788 − 	t	), 𝑇788 − 	t > 0
0, 𝑇788 − 	t ≤ 0																																																																				(2.11) 

In Equation 2.11,	µ =	−7	[𝐾hi] is an empirical scaling constant. The MWI encapsulates 

the factor of mid-level stability by decreasing the final GDI value if warming is present at 

500 mb.  

Inversion Index (II) 

 The II is also an inhibiting portion of the GDI, but it considers the stability across 

the inversion and the presence of dry air entrainment above the inversion. These 

phenomena are captured in the stability factor (Equation 2.12) and drying factor 

(Equation 2.13). 

𝑆 = 	𝜎 ∗ 𝑇678 − 𝑇<88 																																																																																																													(2.12) 
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𝐷 = 	𝜎 ∗ 𝐸𝑃𝑇𝑃= − 𝐸𝑃𝑇𝑃5 																																																																																																		(2.13) 

In Equations 2.12 - 2.13, 𝜎 = 1.5	[𝐾hi] is an empirical scaling constant. Both the S and 

D factors are used to calculate the II.  

𝐼𝐼 = 	 0, 𝑆 + 𝐷 > 0
𝑆 + 𝐷, 𝑆 + 𝐷 ≤ 0																																																																																																	(2.14) 

GDI incorporates II only if II is negative. S is more negative when temperatures increase 

with height in the low levels. D is negative with when dry air entrainment is present. If 

there is not a sufficient inversion or dry air entrainment, II will not lower the final GDI 

value. 

Correction for Elevation (Co) 

 GDI is optimal for quantifying convection potential for locations below 950 mb. 

In order to apply GDI to higher elevations, a terrain correction factor must be applied.  

𝐶𝑜 = 18 −	
9000𝑚𝑏

𝑃rsK − 500𝑚𝑏
																																																																																																				(2.15) 

This correction was proven to work well over the Mexican highlands in the original GDI 

study (Gálvez and Davison 2016).  This correction is important for this study, especially 

in the Ethiopian highlands with heights up to 14,928 feet (ft). This height lies between 

600-550 mb over northern Africa. As surface pressures reach 500 mb the denominator in 

the correction factor approaches zero, which is problematic. This is not a concern for this 

research.  

 The final calculation of GDI is the sum of the four factors (Equation 2.6). Values 

of GDI correspond to various convective potentials (Figure 2.6).  

𝐺𝐷𝐼 = 𝐸𝐶𝐼 + 𝑀𝑊𝐼 + 𝐼𝐼 + 𝐶𝑜																																																																																														(2.16)  
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Figure 2.6: Convective potential based on the GDI value (Gálvez and Davison 2016).  

 
Their findings concluded that GDI outperformed the TTI, LI, KI and the 

Convective Available Potential Energy (CAPE) for the region of their concern, Central 

America and the Caribbean (Gálvez and Davison 2016). They compared brightness 

temperatures with GDI values over the course of one rainy season in 2013. Out of the 

tested indices, GDI matched most closely with brightness temperatures for their area of 

concern. GDI excels in the 15°-25° latitudes “especially over oceans and eastern fringes 

of continents, where trade wind climates prevail” (Gálvez and Davison 2016). Accuracy 

in the GDI forecasts decreases near the intertropical convergence zone (ITCZ) because of 

less prevalent TWIs and fewer cool mid-level troughs in this region.  

 This research examines the applicability of the GDI to northern Africa, 

considering its strengths and weaknesses. One weakness is GDI’s decreased skill in areas 

of “persistent ITCZ and deep-tropical convection environments” (Gálvez and Davison 

2016). GDI’s applicability to northern Africa is impacted by the lower number of mid-

level troughs and TWIs compared to the Caribbean and the presence of the ITCZ. 

Another factor to consider is GDI’s over-estimation of convective potential in thermal 
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low environments (Gálvez and Davison 2016). These limitations may hinder its 

applicability to northern Africa.  
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to describe the data in this research as well as the 

methodology for analyzing the effectiveness of GDI and KI convective forecasts over 

northern Africa. This involves reanalysis weather data, lightning data which serves as 

truth for verification, GDI and KI parameters.  

NCEP GFS Reanalysis Data and GDI Calculation  

In order to analyze convective forecasts, the first step is to replicate the GDI 

calculation and confirm its accuracy with NOAA GDI forecasts. The National Center for 

Environmental Prediction (NCEP) GFS model reanalysis data is acquired from the 

University Corporation for Atmospheric Research (UCAR) Research Data Archive 

(RDA) where they host reanalysis data back to July of 1999 (UCAR 2014).  

GFS reanalysis data is a rerun of the GFS model forecast with observations 

incorporated into the model to increase its accuracy. Reanalysis data incorporates 10% 

more observational data than the GFS model run (UCAR 2014). Some of this observation 

data includes radiosonde and satellite data. Since the reanalysis data incorporates more 

real-time observations, it is the best archived data describing the state of the atmosphere 

(UCAR 2014). The goal of creating these reanalysis files is to offer “the most realistic 

atmospheric analysis” or to archive data that is as close to the actual environmental 

conditions as possible (UCAR 2014). 

GFS reanalysis data is the best option for this research. It is archived in gridded 

binary (GRIB2) format with a 1° by 1° horizontal resolution (UCAR 2017). The files 
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consist of numerous parameters characterizing the atmosphere at pressure levels from 

1000 millibars (mb) up to 10 mb. Parameters required for the GDI calculation include 

temperature and relative humidity at 950 mb, 850 mb, 700 mb and 500 mb. For KI, the 

required parameters are temperature at 850 mb, 700 mb and 500 mb and relative 

humidity at 850 mb and 700 mb.  

Equations 2.2-2.16 calculate the GDI and require mixing ratio values at certain 

levels. Since the GFS reanalysis files do not contain mixing ratio directly, it is calculated 

using relative humidity values. First, the dewpoint temperature (Td) is computed using 

relative humidity (RH) and air temperature (T) at the desired levels (Sensirion 2001). 

𝐻 =	
𝑙𝑜𝑔10 𝑅𝐻 − 2

0.4343 +	
17.62 ∗ 𝑇
243.12 + 𝑇																																																																																				(3.1) 

𝑇𝑑 = 	
243.12 ∗ 𝐻
17.62 − 𝐻 																																																																																																																							(3.2) 

Next, the saturation mixing ratio (𝑒𝑠) and the mixing ratio (r) are computed using the 

dewpoint temperature (Davies-Jones 2009).  

𝑒𝑠 = 6.112 ∗ 𝑒
i<.Y<∗ N_h	;<z.i7
N_h;<z.i7Q;{z.7 																																																																																											(3.3) 

𝑟 = 	
0.6220 ∗ 𝑒𝑠
𝑋	𝑚𝑏 − 𝑒𝑠 																																																																																																																					(3.4) 

In Equation 3.4, X mb refers to the value of the pressure level in millibars (e.g. 950 mb, 

850 mb, 700 mb or 500 mb). EPTP values are then calculated using the mixing ratios and 

Equations 2.5-2.7 for each layer: A, B and C. After ingesting the temperature and relative 

humidity data for each level and computing the mixing ratios, the components of GDI are 

calculable with the addition of certain empirical constants.  
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After calculating the GDI, the next step is to plot it over Africa. This requires a 

map of Africa with geographical and political boundaries. The data for the map is 

acquired from the CIA World Databank II website where they store files of geographical 

and political data by continent (Pape 2004). Political borders for these files are current as 

of 1990. Data for both the continents of Africa and Asia are used to map the continent of 

Africa along with a portion of the Middle East to match the NOAA Africa model GDI 

maps. Each file consists of sub text files that are broken down by continent and type of 

data. For each of the “national boundaries” and “coastline, islands and lakes” files are 

used in order to map out the geographical features and political boundaries.   

To create a map similar to the NOAA Africa model GDI maps, the GDI values 

and Africa map data are all plotted on the same graphic. This data is bounded by 40°S-

40°N latitude and 25°W-60°E longitude. The contour scale is set in increments of 10 GDI 

(5-15, 15-25, etc.) to match the NOAA Africa model GDI scales (Figure 2.2). For 

comparison colors are chosen to mimic NOAA’s color scheme. White areas have 

insufficient reanalysis data to calculate GDI.   

The area of interest for this research is between 0°-20°N latitude and 20°W-50°E 

longitude. Validation of these replicated GDI output maps was confirmed by the 

developer (Dr. Gálvez, NOAA) through visual inspection of a GDI forecast image 

(Gálvez, National Oceanic and Atmospheric Administration, written communication 26 

July 2017).  
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Figure 3.1: A comparison of NOAA’s model GDI (top; NOAA 2017) and the reanalysis 

GDI (bottom) from 01 August 2017 at 00Z. 
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K Index (KI) Calculation  

Plotting the KI is similar to plotting the GDI. An identical process plots the 

geographic and political boundaries in the region of interest, and calculates the dewpoint 

temperatures using Equations 3.1 and 3.2. When plotting the KI, minor changes in the 

contour scale are made to match the KI convective potential thresholds (Table 2.1). KI is 

in increments of five, while GDI is increments of ten and different values of KI indicate 

different convective potentials compared to GDI. The KI map is made to look similar to 

the GDI map with grey and black representing low KI values (low convective potential), 

while other colors represent various convective potentials from green to red (Figure 3.2).   

 
Figure 3.2: KI mapped out over Africa for 15 August 2016 at 06Z. 
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Plotting ATDNET Lightning Data 

 For verification purposes, lightning data is also plotted across northern Africa. 

This data is from the arrival time difference (ATD) thunderstorm detection system known 

as Sferics or ATDNET (AFWA 2012). Sferics is a system employed by the United 

Kingdom Meteorological Office and utilizes the arrival time differences of the signals 

from lightning strikes to identify their location.  

 The ATDNET is a network of sensors for lightning detection. Each New 

OutStation (NOS) sensor “listens” at a very low frequency (VLF) of about 13.7 kHz, a 

radio wave on the electromagnetic spectrum (AFWA 2012). This allows for the sensors 

to have a very long range for listening. Once four NOS sites detect a lightning strike, the 

system locates the flash based on the arrival time at all four stations. Strike location error 

ranges from 8-24 km across northern Africa (AFWA 2012).  

Data extracted from these files includes the date, time, latitude and longitude of 

each strike in order to display them spatially. Lightning strikes are cyan asterisks on the 

index plots to indicate where lightning occurred (Figure 3.3).  

 
Figure 3.3: GDI values (colored contours) at 15 August 2016 at 06Z, with Sferics lighting 

data (cyan asterisks) from 15 August 2016 from 05-07Z.  
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NRL IR Satellite Images 

 Lightning data is compared with corresponding satellite imagery. Satellite images 

are acquired from the Naval Research Laboratory (NRL) Next Generation Weather 

Satellite Demonstration Project (NexSat), which is a partnership with the Cooperative 

Institute of Research in the Atmosphere (CIRA; NexSat 2011). For this project, 

Meteosat8 infrared (IR) images are selected, with a color filter to highlight the cloud top 

temperatures (-20°C). These images encompass a majority of the region of interest only 

missing a few degrees of longitude on the eastern side of the image (Figure 3.4). 

 
Figure 3.4: A color IR satellite image from 06Z on 15 August 2016 with cloud top 

temperatures (°C) indicated by the color filter (NRL 2017).  
 

 Once the lightning data is plotted, visual comparison determines if the lightning 

correlates to cold cloud tops. The freezing level over Africa ranges between 550-500 mb 

or 16,000-19,000 ft in height on forecast model skew-t profiles. Cloud electrification 



28 

requires the presence of frozen drops or graupel particles (Toracinta et al, 2001). Most 

lightning over Africa occurs with 40 decibel echoes reaching heights of 8 km, or 

approximately 26,000 ft, with cloud tops extending above that height (Toracinta et al, 

2001). For this research, areas of cloud heights at or above the -20°C height, which is 

approximately 25,000 ft high on model skew-t vertical profiles in December, are 

sufficient for lightning to occur. True lightning strikes match cloud regions at or below    

-20°C on IR images.  

Methods for Comparing Index Forecasts 

 Once the forecast index values and lightning data are plotted, the next step is to 

quantify the quality of the forecast for that moment in time. A point-by-point method is 

insufficient for this research. Since the forecast model data is mapped onto a 1° by 1° 

grid, this analysis requires assessing each point to see if the forecast correctly identifies 

lightning to occur. Two problems arise during this process. Of note, lightning rarely 

strikes at whole latitude and longitude degree values. Instead the lightning strikes, as 

expected, scatter out at various locations with fractional degree values of both latitude 

and longitude. This is problematic when comparing index values with truth, attempting to 

match model output data at whole degree values with sporadic lightning strikes. 

Moreover, interpretation of convective index forecast values indicating various levels of 

convective potential is subjective. Because of these two issues, a clustering method is 

appropriate, not point-by-point analysis.  

 Clustering methods are used in similar research, such as identifying storms, 

clouds and precipitation fields (Marzban and Sandgathe 2005; Singh and Gill 2013). 
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Overall, cluster analysis recognizes desired features in both forecast and observation 

fields for the purpose of comparing their characteristics (Singh and Gill 2013). This 

research divides the lighting and forecast data into the same number of clusters, or 

groupings of data points, then matches clusters to compare their location and spatial 

coverage differences. The differences in location are location error values and spatial or 

coverage differences are area error values. In the end, assigning each observation cluster 

to one forecast cluster is the best solution for error analysis in this case.  

Hierarchical Clustering Method 

 A study on precipitation fields uses the agglomerative hierarchical clustering 

method (Marzban and Sandgathe 2005). This method separates data points into clusters 

starting with each point as its own cluster and then matching each cluster to the closest 

other cluster in each matching process (Marzban and Sandgathe 2005). Hierarchical 

clustering places each data point into clusters through this manner until there is one 

cluster. In this method, the number of clusters is treated as a variable changing over time 

and producing different error values (Marzban and Sandgathe 2005). Therefore, error 

fields are created for each data set. The user can decide where the cut off will be in the 

number of clusters based on the dendrogram graphic displaying how the clustering of the 

data points in sequential iterations (Marzban and Sandgathe 2005). Because the number 

of lightning data points is much greater than the forecast data points, the number of 

observed clusters would be significantly more than the forecast clusters. Creating the 

dendrograms and determining the ideal number of clusters is temporally and 

computationally expensive. Hierarchical clustering has been shown to be useful in other 

research, but would not work well for this research. This project requires the same 
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number of clusters to be specified between the observed and forecasted data to calculate 

location and area error. Since there was no solid manner to identify the ideal number of 

clusters from the dendrogram that works well for both forecast and observed data, 

hierarchical clustering is not the ideal method for analyzing data in this project.  

K-Means Clustering Method 

 Another way to group data into clusters is the k-means clustering method. Unlike 

hierarchical clustering, k-means clustering focuses on idealizing the number of clusters 

by balancing the number of clusters with the total sum of the distances between data 

points and their centroids (Singh and Gill 2013). A centroid is the center of a cluster. K-

means clustering groups data points by randomly placing k number of centroids in the 

data and assigning each data point to the closest centroid (Singh and Gill 2013). The 

distance from each data point to its centroid is summed up into the total point-to-centroid 

distance for that number of clusters. Then k number of centroids are placed throughout 

the data again and the data points are grouped into new clusters. This is done ten times 

for each k number of clusters and the smallest sum of total point-to-centroid distances is 

saved.  

At first the number of clusters, k, is one and the lowest total point-to-centroid 

distance is saved. Then the minimum total point-to-centroid distance is determined for 

two clusters, then three and so on, up to ten clusters. Once all the minimum total point-to-

centroid distances are plotted, the idealized number of clusters is identified using what is 

called a K-pick plot (Figure 3.5).    
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Figure 3.5: An example K-pick plot, full view from 1-10 clusters (left) and a zoomed-in 

view, 2-10 clusters (right). 
  

The total point-to-centroid distances from the lightning data resulted in distances 

on the order of 108, as seen on the y-axis (Figure 3.5). It is difficult to properly choose an 

ideal number of clusters on such a plot, so a zoomed-in version of this plot was created to 

highlight the ideal number of clusters. The K-pick plots emphasize the decrease in total 

point-to-centroid distance with increasing cluster number, k (Singh and Gill 2013). In the 

example above, four was chosen for k because it is the last increase in cluster number 

associated with a large decrease in total point-to-centroid distance. The ideal k number of 

clusters is found at the bottom of the “knee” made by the curve in the K-pick plot. 

Beyond that point on the curve, the total sum of distances does not decrease significantly 

with each added cluster. Using this method, the number of clusters is chosen in an 

objective manner based on the K-pick plot of the lightning data at each time analyzed. 

The ideal number of clusters is then applied to the lightning data and each index analyzed 

for each particular time.  
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Error Analysis Method 
 
 Error analyses are conducted to assess the forecast quality of each applicable 

index at desired timeframes. The process begins by plotting the observed lightning data 

on top of the index being examined for that particular time (Figure 3.4). In order to 

conduct the analysis, only certain data from the index points are kept, the data points 

indicating scattered thunderstorms to occur. This scattered thunderstorm threshold is GDI 

values at or above 35 and KI values at or above 30 (Figure 2.6 and Table 2.1). Index 

values at or above those thresholds are selected and all others are omitted (Figures 3.6 

and 3.7).  

 
Figure 3.6: GDI values 35 and above (red dots) and lightning data (cyan asterisks) on 15 

August 2016 at 06Z.  

 
Figure 3.7: KI values 30 and above (red dots) and lightning data (cyan asterisks) on 15 

August 2016 at 06Z.  
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Next, the lightning data is assessed for the ideal number of clusters to divide the 

data into using the K-pick plot process described above. Once the ideal number of 

clusters is acquired, both the lightning and index data at or above the scattered 

thunderstorm threshold are divided up into k clusters (Figure 3.8). Specified colors are 

assigned to clusters randomly. Cluster one is blue, cluster two was red, etcetera. 

Lightning cluster one, blue, does not always match index cluster one, also blue. Clusters 

are matched by the researcher examining and assigning clusters from east to west and 

north to south. Once the clusters are matched, the location and area error values are 

calculated.  

 
Figure 3.8: Lightning data (left) and GDI at or greater than 35 (right) divided into clusters 

from 15 August 2016 at 06Z.  
 

 Clustering is the appropriate method chosen for this research because of the 

ability to assess both location and area errors. These factors are calculated in the 

following manner:  

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟 = 	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑	𝑎𝑛𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑; 

𝐴𝑟𝑒𝑎	𝐸𝑟𝑟𝑜𝑟 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑎𝑛𝑑	𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

− 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑎𝑛𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑. 
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Location error is the distance between an observed centroid and a forecast centroid. Area 

error is the difference of the average distance between a centroid and each of the data 

points in an observed and forecast cluster. Although more complex than the location 

error, area error is valuable in portraying the horizontal expanse of the cluster, as each 

point-to-centroid distance in the cluster is given the same weight. The number of 

observed and forecast cluster pairs ranges from four to six, depending on the lightning K-

pick plot. Location and area error values from each cluster pair are averaged for these six-

hour time increments.  

 This research examines the effectiveness of both GDI and KI forecasts using error 

values across all seasons in an intra-annual study with an in-depth analysis of their 

capabilities during the most active convective season: The Northern Hemisphere late 

summer and early fall. To obtain sufficient knowledge on the forecast ability of GDI and 

KI over northern Africa in all seasons, time periods evenly spaced throughout the year 

are chosen for analysis. Times include 00Z, 06Z, 12Z and 18Z on 15-17 February, 15-17 

May, 15-17 August and 15-17 November of 2016. These times are selected to reflect 

even amount of time between them and analyzing data across all seasons, without regard 

for any particular synoptic situation. Since most thunderstorms occur in Africa during the 

Northern Hemisphere summer, an in-depth analysis of 15-17 August 2016, 19-21 August 

2017, 25-27 August 2017, 15-17 September 2017 and 26-27 September 2017 is 

conducted to include various synoptic situations in late summer and early fall to garner 

further knowledge on the forecast ability of convective indices.   

 For a further analysis on the data collected, statistical methods are needed to 

assess the robustness of the data and the confidence levels that can be applied to 
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conclusions. Bootstrapping is the statistical technique used in this research, which utilizes 

the data to expand itself and determines confidence intervals based on synthetic values.  

Bootstrapping Statistical Method 

 Often times parametric statistics are utilized to calculate confidence intervals or 

standard error of data sets (Ong 2014). However, these methods make the underlying 

assumption that a data set is normally distributed. Unless a data set is symmetric with a 

standard deviation of one, this assumption is not applicable and error results are 

unreliable (Ong 2014). On the other hand, non-parametric methods do not rely on such 

assumptions of the distribution of sample data sets. These methods resample the data with 

replacement and assume the sample distribution is representative of the population (Ong 

2014). Since a normal distribution cannot be assumed for the data sets in this research, a 

resampling technique called bootstrapping is utilized.  

Bootstrapping is a statistical method for expanding a data set by inflating it 

without changing its characteristics for statistical analysis. Because it is based on the law 

of large numbers, bootstrapping is a solid method for creating sufficient data so that the 

“empirical distribution will be a good approximation of the true distribution” (Orloff and 

Bloom 2014). This technique became well known in the late 1970s, but practical only 

later with high speed computational resources for implementation. Computations are 

conducted “on the data itself to estimate the variation of statistics that are computed from 

the same data” (Orloff and Bloom 2014). It is named after the metaphor of pulling 

oneself up by one’s bootstraps. For this research, each set of error data, location and area 

from each two to three-day time period is bootstrapped and expanded to 10,000 points. 
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The end goal is to compare the confidence intervals of each error data set to the others in 

order to assess how well each index performed.  

 The bootstrapping statistical analysis begins by calculating artificial means of the 

data. Error data is sampled¾GDI location error for example¾with replacement and 

averaged. This creates an artificial mean value close to but not equal to the true mean. 

10,000 artificial means are calculated from each data set to acquire a quality estimate of 

the 95% confidence interval (Orloff and Bloom 2014). A high level of confidence, or 

95% confidence interval, is desired in this project. Bootstrapping allows researchers to 

estimate confidence intervals with high accuracy even with small data sets.  

 There are multiple ways to calculate confidence intervals from bootstrapped data.  

For a 95% confidence interval, the percentile method would use the 0.975 and 0.025 

critical values, or 9,750th and 250th largest values in a 10,000-member data set as error 

bar end points above and below the actual mean, respectively (Orloff and Bloom 2014). 

A more accurate method is the bias-corrected and accelerated (BCa) method (Efron and 

Tibshirani 1993). The BCa method comes closest to fulfilling the standard of good 

confidence intervals, meaning they “closely match exact confidence intervals” and “give 

dependably accurate coverage probabilities in all situations” (Efron and Tibshirani 1993). 

Confidence intervals constructed using BCa are more accurate overall and recommended 

especially for small sample sizes, like the 12-member data sets in this research (Wilks 

2011). BCa is more advanced through its incorporation of the cumulative distribution 

function (CDF) of the standard Gaussian distribution along with a bias correction 

parameter that “reflects median bias of the bootstrap distribution” to account for partiality 

(Wilks 2011). It also includes the acceleration parameter, which corrects for the skewness 
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of the data. By incorporating more parameters into its calculation that encapsulate the 

characteristics of the data, the BCa method produces more accurate confidence intervals.  

 
BCa confidence intervals are calculated using the desired number of bootstrapped 

samples (10,000) the calculation desired (averaging) and the data for calculating the 

confidence intervals. Error bars are plotted using the mean of the data set and the lower 

and upper bounds of the confidence interval (Figure 3.9). A 95% confidence interval is 

shown, where 95% of all possible mean values fall into that range. Through BCa, 

confidence intervals are created for location and area error data for each index across all 

the times analyzed.  

 
Figure 3.9: An example confidence interval plot with the mean (circle) and 95% 

confidence interval (error bars) for the GDI location error from 19-21 August 2017. 
 

Summary 

In order to conduct an error analysis of convective index forecasts in this project, 

the following methodology is implemented. First, convective indices are plotted using 
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GFS reanalysis data, with lightning data overlaid, and validated using real-time IR 

satellite imagery. Then, the lightning and index data are separated into the same number 

of clusters through the k-means clustering method. Paired clusters are examined to 

calculate both location and area error values. Finally, the error data is expanded using 

bootstrapping statistical methods and confidence intervals are calculated using the BCa 

method.  
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IV.  Analysis and Results 

Chapter Overview 

The purpose of this chapter is to evaluate and convey the results from the intra-

annual and intra-seasonal (summer) studies. Also included are the results from an initial 

analysis on GDI modifications tailored specifically for Africa (GDI-As). The results 

include both the location and area error values.  

Intra-Annual Study  

 A study examining the index forecast errors across all seasons is conducted to 

assess the effectiveness of each index’s forecasts throughout the year. Error analysis 

method described in Chapter III is conducted for the following dates and times in 2016: 

00Z, 06Z, 12Z and 18Z on 15-17 February, 15-17 May, 15-17 August and 15-17 

November. These dates and times are chosen because they are evenly spaced throughout 

a year and encompass each season.  

Intra-Annual Study: Location Error 

 Location error quantifies the distance between the observed and forecast lightning 

clusters. Mean location error values are plotted with 95% confidence intervals across all 

seasons (Figure 4.1). The closer these error values are to zero, the closer the forecast 

convection was to the actual lightning strikes. Results show mean error values of both 

GDI and KI are relatively close throughout the year. Both indices’ location error values 

follow the same pattern, being greatest in February and least in August. More confidence 
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can be placed in both GDI and KI forecasts for location of convection in the summer than 

in the winter.  

 

 
Figure 4.1: Intra-annual location error values of GDI (blue) and KI (red) forecasts. Means 
are indicated with circles and the 95% confidence intervals are indicated with error bars.  

 
 When comparing GDI and KI forecasts for location error intra-annually, little 

difference in locating convection can be concluded. For February, August and November 

there is little difference in the mean location error values and the 95% confidence 

intervals between the two indices. The largest difference can be seen in the location error 

values for May, where the mean values are the furthest apart. However, since the 

confidence intervals overlap, not much confidence can be placed in stating KI’s forecast 

was more accurate than GDI’s. Overall, GDI and KI location error values are similar 

when forecasting convection intra-annually.  
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Intra-Annual Study: Area Error  

 Area error quantifies the accuracy of the spatial coverage depicted in index 

forecasts when compared to observed lightning. GDI error values (blue) and KI values 

(red) with error bars attached displaying the 95% confidence intervals are plotted (Figure 

4.2). Although the intra-seasonal location errors between GDI and KI are similar, a 

seasonal pattern can be identified with GDI area error values being lowest in February 

and highest in August, which is the opposite of the location error intra-annual pattern. KI 

area error values fluctuate less in the intra-annual case and are higher than any of the GDI 

area error values. Because these are all positive values, convective index forecasts almost 

always depict larger spatial coverage for lightning than what occurs. That difference in 

spatial coverage varies between indices intra-annually.  

 
Figure 4.2: Intra-annual location error values of GDI (blue) and KI (red) forecasts. Means 
are indicated with circles and the 95% confidence intervals are indicated with error bars.  

 
GDI consistently forecasts the areal coverage of lightning more accurately than 

KI throughout the year. This is shown by the GDI mean values being lower than KI mean 
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values in all seasons, as well as the confidence intervals never overlapping. The 

confidence intervals are corrected for biases within each data set through the bias-

correction and acceleration method (described in Chapter III).  

Intra-Seasonal (An In-Depth Late Summer/Early Fall Study)  

 An in-depth study is conducted to examine the forecast skill of GDI and KI during 

the most active convective season. In this study the dates are chosen specifically for the 

synoptic situation present over northern Africa, analyzing days with predominant MCSs 

(15-17 September 2017; Figure 4.3), a mix of MCSs and smaller airmass thunderstorms 

(15-17 August 2016, 19-21 August 2017 and 25-27 August 2017; Figures 4.4-4.6), and 

just airmass thunderstorms (26-27 September 2017; Figure 4.7).  

 

 
Figure 4.3: IR satellite image from 17 September 2017 at 00Z (NRL 2017). 
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Figure 4.4: IR satellite image from 16 August 2016 at 18Z. 

 

 
Figure 4.5: IR satellite image from 20 August 2017 at 00Z. 

 

 
Figure 4.6: IR satellite image from 25 August 2017 at 00Z. 
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Figure 4.7: IR satellite image from 27 September 2017 at 15Z. 

 
Intra-Seasonal Study: Location Error 

 For the intra-seasonal study location error values (Table 4.1 and Figure 4.8) each 

date range is labeled with the dates as well as the predominant convective synoptic 

situation for those days where MCS denotes convection is predominantly from mesoscale 

convective systems, and AT denotes convection is predominantly airmass thunderstorms. 

If a date range has both synoptic situations, the first one listed is the prevailing cause of 

convection. For 19-21 August, 2017 a majority of the convection is from MCSs, but 

airmass thunderstorms also exist. However, during 25-27 August 2017 the prevailing 

cause of convection is airmass thunderstorms with some MCSs present.  

 
Table 4.1: GDI and KI location error ranges by date range.  

 
 Convection Type GDI Location Error 

Range in ° 
KI Location Error 

Range in ° 
15-17 Aug 2016 MCS/AT 6.7465 - 8.4119 6.5795 – 8.3739 
19-21 Aug 2017 MCS/AT 7.8819 - 11.2938 6.6512 – 9.4888 
25-27 Aug 2017 AT/MCS 7.4489 - 10.2761 6.8591 – 10.3150 
15-17 Sep 2017 MCS 6.3466 - 9.8571 5.6765 – 9.1606 
26-27 Sep 2017 AT 7.0432 – 13.0533 5.4714 – 10.4461 
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Figure 4.8: Intra-seasonal study location error with 95% confidence intervals grouped by 

days with predominant convective synoptic situations indicated, MCS for mesoscale 
convective systems and AT for airmass thunderstorms.  

 
 The values from August 2017 and mid-September of 2017 relate to the values 

from August of 2016, further supporting that GDI performs similar to KI in terms of 

location error. Late September exhibits a wider range of values where the predominant 

convective synoptic situation is airmass thunderstorms. These values are comparable to 

the November, May and February values from 2016. This indicates, once again, that both 

indices are more accurate at locating convection in the Northern Hemisphere during 

summer months and decrease in accuracy in transition and winter seasons.  

Similar to the intra-annual study, the location errors between GDI and KI in the 

summer cases are not significantly different. Even in various convective synoptic 

situations, predominant MCSs or airmass thunderstorms, the 95% confidence intervals 

for GDI and KI overlap. Whether convection is present in large conglomerates or spread 

out in smaller clusters over a larger area, both indices perform at the same level.  
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Intra-Seasonal Study: Area Error 

 Area values from the intra-seasonal study are also analyzed (Table 4.2 and Figure 

4.9). The same date ranges are shown, as well as the predominant convective synoptic 

situations. The intra-seasonal study further supports the intra-annual patterns in both GDI 

and KI area error values. The GDI is most inaccurate, indicated by higher area error 

values, in the summer. KI accuracy increases and error decreases in the September date 

ranges. However, KI has no significant change in area error values, which remain 

consistently in the same range as the intra-annual KI values.  

Table 4.2: GDI and KI area error ranges by date range 
 Convection Type GDI Area Error 

Range in ° 
KI Area Error 

Range in  ° 
15-17 Aug 2016 MCS/AT 2.3177 – 3.2114 3.535 – 4.2692 
19-21 Aug 2017 MCS/AT 1.8735 – 2.6472 2.8435 – 3.8641 
25-27 Aug 2017 AT/MCS 2.5772 – 3.7677 3.7325 – 4.8509 
15-17 Sep 2017 MCS 1.5782 – 2.2652 3.1127 – 3.7854 
26-27 Sep 2017 AT 1.3840 – 2.6961 2.1596 – 3.8264 

 

 
Figure 4.9: Intra-seasonal study area error grouped by days with predominant convective 
synoptic situations indicated, MCS for mesoscale convective systems and AT for airmass 

thunderstorms. 
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When comparing GDI and KI area error values from the intra-seasonal study, 

GDI is more accurate than KI at portraying the spatial coverage of lightning in each 

synoptic situation, but not with 95% confidence. For the date ranges where the 

predominant convective synoptic situation is MCSs, the GDI error values are 

significantly lower than KI values, with no overlap of the error bars. However, no such 

conclusion can be made with the same high level of confidence when convection is 

present predominantly as airmass thunderstorms. During these date ranges (25-27 August 

2017 and 26-27 September of 2017) the error bars indicating the 95% confidence interval 

of the two indices overlap. With 90% confidence GDI has lower area error than KI when 

airmass thunderstorms are the prevailing convective situation (Figure 4.10). An 

interesting distinction is made between the two convective settings in regard to areal 

coverage of lightning. When MCSs are predominant, GDI more accurately portrays how 

spread out the areas of convection will be with 95% confidence. With mostly airmass 

thunderstorms present, GDI has lower area error than KI, however only with 90% 

confidence. KI forecasts are consistently more spread out and cover more areas with high 

potential for convection when compared to GDI forecasts. GDI’s area error values are 

consistently less than KI’s when MCSs are predominant. However, area error values are 

more similar when airmass thunderstorms are predominant.  
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Figure 4.10: Airmass thunderstorms area error values with 90% confidence intervals.  

 

Potential GDI-As Study 

 Since GDI and KI have comparable location error values across all seasons and 

convective synoptic situations, the next step is to find an index that would further reduce 

location error values. Several modifications are made to GDI (GDI-As) which are guided 

by past research. Attempts at improving location error through GDI-As fall into three 

categories: average vertical velocity (AveVV), relative humidity (RH) and equivalent 

potential temperature proxies (EPTP). 

GDI-A: Average Vertical Velocity (AveVV) 

 One attempt to modify GDI into a new GDI-A is to include the average vertical 

velocity throughout the atmospheric column as another factor contributing to the 

resulting index value. Vertical velocity values are averaged through the column from 

1000-200 mb every 50 mb (1000 mb, 950 mb, 900 mb, etc.). Rising air is essential for 

convection, because updrafts fuel thunderstorms. No singular vertical velocity value at a 

pressure level shows any promise for identifying updrafts, so a column-averaged vertical 

velocity value is used. To locate these updrafts and incorporate them into a convective 
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forecasting index, vertical velocities are calculated, averaged throughout the column and 

integrated into a GDI-A calculation.  

Vertical velocities in pressure coordinates,	𝜔	 ��
r

, are native to the GFS 

reanalysis data files. These values are converted into height coordinates, 𝑤	 �
r

. The 

conversion requires pressure values and partial pressure of water vapor (𝑃𝑣) at the 

various levels (Barani Design 2012). To calculate the 𝑃𝑣, the relative humidity is 

multiplied by the saturation vapor pressure (𝑒r; Equation 3.3). Once the 𝑃𝑣 values are 

obtained, the air density (𝜌) at each level is calculated:  

𝜌 = 	
100	 ∗ 𝑋	𝑚𝑏
𝑅𝑑	 ∗ 𝑇 ∗ 	 1 −	

0.378 ∗ 𝑃𝑣	
100 ∗ 𝑋	𝑚𝑏 .																																																																				(4.1)						 

 

In Equation 4.1, 𝜌 is the air density, 𝑋	𝑚𝑏 is the pressure in mb at various levels (1000 

mb, 950 mb, etc.), 𝑅𝑑 = 287.05	 Z
[\∗`

 the gas constant for dry air, and 𝑇 is the 

temperature 𝐾 . After calculating the air density, the final part of the conversion is 

conducted:  

𝑤 =	
𝜔

−𝜌 ∗ 𝑔	.																																																																																																																															(4.2) 

In Equation 4.2, 𝑤	 �
r

 is the vertical velocity, 𝜔	 ��
r

 is the vertical velocity, 𝜌 is the air 

density and 𝑔 = −9.8	 �
r�

 (Holton and Hakim 2013).  

 Vertical velocities are averaged throughout the column (𝐴𝑣𝑒𝑉𝑉) and added to the 

GDI Equation 2.16 to create the new GDI-A equation (Figure 4.11):  

𝐺𝐷𝐼𝐴����� = 𝐸𝐶𝐼 + 𝑀𝑊𝐼 + 𝐼𝐼 + 𝐶𝑜 + 𝐴𝑣𝑒𝑉𝑉.																																																																(4.3)  
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Figure 4.11: GDI-AaveVV from 15 August 2016 at 06Z with lightning (cyan asterisks).  

 
GDI-A: Relative Humidity (RH) 

 GDI is also modified to incorporate relative humidity values at certain pressure 

levels. This idea came from KI’s calculation (Equation 2.1) that includes the 700 mb 

dewpoint depression value. Since this index is typically applied to tropical locations and 

the dewpoint depression value is its unique attribute, a similar concept is applied to 

modifying the GDI.  

The levels chosen for these relative humidity modifications are not included 

individually in the EPTPs. 700 mb is chosen because it is used in the KI calculation. Two 

other layers are chosen, 850 mb and 300 mb, to test incorporating relative humidity 

values above and below 700 mb. Relative humidity values are added to the original GDI 

Equation 2.16 for these relative humidity GDI-As:  

𝐺𝐷𝐼𝐴�� = 𝐸𝐶𝐼 + 𝑀𝑊𝐼 + 𝐼𝐼 + 𝐶𝑜 + 𝑅𝐻𝑋𝑋𝑋.																																																																				(4.4) 

In Equation 4.4, 𝑅𝐻𝑋𝑋𝑋 is the relative humidity values at the desired levels, 850 mb, 

700 mb or 300 mb (added separately into distinct GDI-As; Figures 4.12-4.14).  
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Figure 4.12: GDI-ARH850 from 15 August 2016 at 06Z with lightning (cyan asterisks). 

 

 
Figure 4.13: GDI-ARH700 from 15 August 2016 at 06Z with lightning (cyan asterisks). 

 

 
Figure 4.14: GDI-ARH300 from 15 August 2016 at 06Z with lightning (cyan asterisks). 
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GDI-A: Equivalent Potential Temperature Proxies (EPTPs) 

 The third category of GDI modifications involves changing the level at which the 

highest EPTP is calculated (Equations 2.5-2.7). For these GDI-AEPTP modifications, the 

level at which the 𝐸𝑃𝑇𝑃@  is calculated is changed from 500 mb to 900 mb, 850 mb, 800 

mb, 700 mb and 600 mb. These levels are chosen because the dynamics captured at 500 

mb in the higher latitudes of the Caribbean Sea are captured at lower levels in the lower 

latitudes of northern Africa. No additional factors are added for these GDI-As, just the 

change in where the 𝐸𝑃𝑇𝑃@  is calculated:  

𝐺𝐷𝐼𝐴��N���� = 𝐸𝐶𝐼	 𝐸𝑃𝑇𝑃𝑋𝑋𝑋 + 	𝑀𝑊𝐼 + 𝐼𝐼 + 𝐶𝑜.																																																				(4.5) 

Changing where the 𝐸𝑃𝑇𝑃@  is calculated alters the values of the resulting index (Figures 

4.15-4.19).   

 
Figure 4.15: GDI-AEPTP900 from 15 August 2016 at 06Z with lightning (cyan asterisks). 
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Figure 4.16: GDI-AEPTP850 from 15 August 2016 at 06Z with lightning (cyan asterisks). 

 

 
Figure 4.17: GDI-AEPTP800 from 15 August 2016 at 06Z with lightning (cyan asterisks). 

 

 
Figure 4.18: GDI-AEPTP700 from 15 August 2016 at 06Z with lightning (cyan asterisks). 
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Figure 4.19: GDI-AEPTP600 from 15 August 2016 at 06Z with lightning (cyan asterisks). 

 
 
Potential GDI-As: Location Error 

 Error analysis is conducted on each GDI-A utilizing the same number of clusters 

based on the lightning data for k-means clustering. Then each error data set is 

bootstrapped and confidence intervals are calculated. This date range of 15-17 August of 

2016 is chosen because it is the most active thunderstorm season for northern Africa. 

GDI values (blue) with black horizontal lines indicate the upper and lower bounds of the 

GDI 95% confidence interval for comparison (Figure 4.20). KI values (red) and GDI-A 

values (black) are indicated as well. The difference between the EPTP600 35 and 

EPTP600 40 is the scattered thunderstorm threshold. Since the index values are altered 

with each modification, 35 no longer means scattered thunderstorms for every GDI-A 

tested. EPTP600 35 considers 35 to be scattered thunderstorms, while EPTP600 40 

considers 40 to be the threshold. The result is a slight change in location error between 

the two GDI-As, and EPTP600 40 indicates significantly high error values than GDI. 
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Changing the scattered thunderstorm threshold adjusts the location error values from 

similar GDI-As, and dramatically affect the GDI-As significance when compared to GDI 

and KI.  

Overall, most of the GDI-A options tested have similar location error values as 

GDI and KI. Almost all the GDI-A confidence intervals fall into the GDI 95% confidence 

interval. Only the EPTP600 40 values are higher, meaning this GDI-A has significantly 

higher location error than GDI and KI. GDI-As that consider factors in the lower levels, 

900-700 mb, seem to have lower mean location error than GDI, but remain within the 

bounds of the GDI 95% confidence interval. This proves most of these GDI-As would 

forecast the location of convection with the same skill as GDI and KI.  

 
Figure 4.20: Location error values from GDI, KI and GDI-As for August 2016. 

 
Potential GDI-As: Area Error 

 Area error values are also collected from the error analysis on all the GDI-As 

(Figure 4.21). Almost all the GDI-As have significantly lower area error values than KI, 

as with GDI. When considering the difference in scattered thunderstorm threshold, the 
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EPTP600 35 has higher area error values than the EPTP600 40, the opposite of location 

error. Higher scattered thunderstorm threshold values will decrease the spatial extent of 

the convective forecast. The entire EPTP600 40 confidence interval lies within the 

EPTP600 35 confidence interval, meaning increasing the threshold narrows the possible 

mean error values, but does not decrease error values in this case. Since increasing the 

threshold significantly increases the location error, this could mean the scattered 

thunderstorm threshold has more of an effect on location error than area error. This is an 

important conclusion when considering methods for reducing location error.  

 
Figure 4.21: Area error values from GDI, KI and GDI-As for August 2016. 

 
All the GDI-A confidence intervals overlap with the GDI 95% confidence 

interval. For area error, the GDI-As that include RH and EPTP factors from higher levels 

in the atmosphere prove to be the most promising. The EPTP600s confidence intervals 

indicate the lowest error values out of all the EPTP GDI-As. The most promising 

prospective GDI-A to significantly reduce area error is RH300 with its 95% confidence 

interval barely overlapping with GDI’s. The results from RH300 indicate an increase in 
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vertical resolution of the data has potential to decrease GDI area error values 

significantly. 
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V.  Conclusions and Recommendations 

Chapter Overview 

The purpose of this chapter is to state the conclusions of this research and 

recommend further research to improve forecasting of convection in northern Africa. 

Conclusions are made from the analysis and results in Chapter IV above.  

Conclusions of Research 

The guiding question of this research is how well GDI forecasts depict convection 

over northern Africa when compared to the only applicable existing convective index: 

KI. Two types of error are measured: (i) location error, which measures the distance 

between cluster centers of observed and forecasted convection, and (ii) area error, which 

measures the difference in spatial coverage between observed and forecasted convection. 

Overall, GDI and KI consistently has similar location error values. However, GDI has 

significantly lower area error values than KI in almost all cases, except when convection 

is mostly airmass thunderstorms in the intra-seasonal study.  

Intra-Annual Study Conclusions 

 In the intra-annual study, the forecast skill of the indices is tested throughout each 

season in one year. GDI and KI have similar skill when forecasting the location of where 

lightning will occur. Location error values from both indices are lowest in the summer 

and highest in the winter. However, GDI shows significantly lower area error values than 

KI in the intra-annual cases. An opposite trend from location error is found in that GDI 

area error values are the lowest in the winter and highest in the summer. GDI consistently 
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depicts the spatial coverage of convection more accurately than KI. This difference in 

error values is most drastic in the winter and least in the spring.  

Intra-Seasonal Study Conclusions  

 The intra-seasonal study examines different date ranges across the late summer 

and early fall to assess the indices’ forecast skill in different convective synoptic 

situations. In regards to location error, both indices perform similarly when locating 

convection. Regardless of synoptic situation, neither index is significantly more accurate 

than the other. GDI outperforms KI in area error when the predominant convective 

synoptic situation is MCSs. When convection is mostly found in large systems, the GDI 

depicts the spatial coverage of lightning more accurately than KI. However, no such 

conclusion can be made from this study for days when convection is predominantly 

found in the form of airmass thunderstorms. This is possibly due to the inability of the 

coarse horizontal resolution of the GFS reanalysis data to resolve airmass thunderstorms.   

Potential GDI-A Study Conclusions 

 Further conclusions on the impact of the scattered thunderstorm threshold can be 

made from the potential GDI-A study. An adjustment in the threshold changed both the 

location and area error values. Area error values experience minor changes with an 

adjustment in scattered thunderstorm threshold. However, altering the threshold has 

greater impacts on location error values. Since the change in error values was much 

greater for location error than area error, the scattered thunderstorm threshold has a 

greater impact on location error than area error. Scattered thunderstorm thresholds could 

be adjusted to find the minimum location error values for any particular index.  
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The primary goal of testing GDI-As is to identify modifications that could 

produce significantly lower on GDI error values. All GDI-As indicate similar location 

error values as GDI and KI (Figure 4.20). All the GDI-A confidence intervals exist within 

the GDI and KI confidence intervals. For area error, most of the GDI-A confidence 

intervals are within the bounds of the GDI confidence interval, if not higher in error 

values. The GDI-A that shows potential in lowering GDI’s area error values is the 

RH300, which incorporates upper-level relative humidity values into its calculation. With 

improved vertical resolution, the small overlap in the confidence intervals may disappear, 

indicating a significant reduction of area error.  

Significance of Research 

GDI forecasts the location of lightning similar to KI, and GDI more accurately 

portrays the spatial expanse of convection than KI. Since KI often paints most of the 

north African region with high potential for convection in the summer months, GDI is a 

higher quality convective forecast than KI. GDI narrows down and highlights the areal 

coverage of convection and does not sacrifice the accuracy in locating lightning. When 

compared to KI forecasts, which depict high potential for convection across the continent, 

GDI is more accurate at portraying the spatial coverage of lightning. Instead of predicting 

much of the continent to be covered in thunderstorms all summer, like KI forecasts, GDI 

reduces the spatial coverage of high convective potential areas with the same accuracy in 

locating lightning occurrences. In the end, this greatly aids forecasters in identifying and 

forecasting the environmental conditions in northern Africa.  
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Recommendations for Action 

Based on the results from this research, forecasters should utilize the GDI when 

predicting convection in northern Africa. By using the GDI, they can forecast the location 

and spatial coverage of convection and more accurately predict environmental conditions. 

This index should be used in combination with other forecasting tools¾such as real-time 

satellite imagery, other model data and even the KI¾to estimate the nature of convection 

in the future. Since GDI’s skill decreases when airmass thunderstorms are the 

predominant convective synoptic situation, it should be used in conjunction with other 

forecasting tools. The GDI forecasts are currently depicted over Africa on the NOAA 

website link where the Gálvez and Davison article is found in the reference section 

below. Users may access the data, which forecasts 168 hours past the model run time.  

Recommendations for Future Research 

This project reveals that GDI is useful when forecasting convection over northern 

Africa, especially for areal coverage, but also can be investigated for improving location 

error. The focus of this future research section is on possible leads in the GDI-As and 

which modifications to the GDI are most promising.  

One category of GDI-As that shows promise is the relative humidity 

modifications, specifically the inclusion of upper-level relative humidity. There is 

minimal overlap of the GDI and RH300 confidence intervals for area error. With 

enhanced vertical resolution, results could show inclusion of upper-level relative 

humidity significantly lowers GDI area error. The reduction in area error comes at no 

cost of location error; this modification leaves GDI’s ability to locate lightning in-tact. 
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Further research is needed to pinpoint which level in the atmosphere gives an optimal 

GDI-A, since this project only considers 850 mb, 700 mb and 300 mb. Identifying an 

optimal relative humidity level could significantly reduce area error and perhaps the 

location error as well.  

Another category of GDI-As with a promising lead was the EPTPs. Low and mid-

levels are considered, 900 mb, 850 mb, 800 mb, 700 mb and 600 mb, but higher levels 

(e.g. less than 600 mb) should also be tested. A trend of decreasing area errors is 

indicated as EPTP modifications increase in height; however, these also result in 

worsening location error values. When considering EPTP changes to the GDI, balancing 

the location and area error values must be the guiding method to deciding whether this 

modification is beneficial.  

A third avenue of further research is adjusting the scattered thunderstorm 

threshold. This threshold impacts the location error values while maintaining similar area 

error values. Different thresholds should be tested to determine whether a GDI-A could 

produce significantly lower location error. Another possible area of research is adjusting 

the scattered thunderstorm threshold on the existing indices, both GDI and KI, to find the 

optimal threshold for Africa. This could possibly influence the location error values for 

each index.  

Moreover, as mentioned in Chapter I, the samples in the data sets in this research 

are six hours apart. In order to achieve greater independence amongst the sample error, 

analysis of data samples that are 24 hours or more apart could be used to future research 

(Ong 2014). 
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Finally, in testing the forecast skill of GDI against KI using a higher resolution 

model could be included in further research. With higher horizontal resolution, GDI 

could highlight airmass thunderstorms previously overlooked in GFS reanalysis data. 

Using a higher horizontal resolution model output could show increased promise in 

GDI’s ability in lowering area error values.  

Summary 

The GDI, created for the Caribbean and Central America, has applicability to 

northern Africa. GDI forecasts depict convection in this region more accurately than KI 

forecasts. Forecasters can place confidence in the GDI forecasts when predicting 

thunderstorms in northern Africa. GDI can be utilized, along with other forecasting tools, 

to piece together an accurate depiction of environmental conditions, local weather 

patterns and, thus, the earth’s climate system. Although challenges in forecasting African 

weather remain, employing the GDI will enhance environmental situational awareness. 

Further research on African thunderstorms is needed and an index specifically tailored for 

Africa may prove even more beneficial. 
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Appendix A: Intra-Annual Error Values 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	

KI	Area	
Error	

15-Feb	 		 		 		 		
00Z	 16.68413	 -1.74096	 22.689166	 -5.0627	
06Z	 11.398325	 -0.722825	 17.6698	 -3.247675	
12Z	 10.681075	 -1.077275	 14.604225	 -3.277175	
18Z	 10.03716	 -0.98667	 12.864166	 -3.28753	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	

KI	Area	
Error	

16-Feb	 		 		 		 		
00Z	 16.951925	 -1.0761	 17.311675	 -3.2622	
06Z	 3.6673	 -0.9466	 13.3121	 -3.079875	
12Z	 8.275575	 -0.827	 14.2167	 -4.0301	
18Z	 10.2467667	 -0.5418667	 5.729533	 -4.184966	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	

KI	Area	
Error	

17-Feb	 		 		 		 		
00Z	 13.743975	 -1.04755	 8.2334	 -3.092525	
06Z	 21.2962	 -1.84403	 4.891933	 -3.14126	
12Z	 15.30304	 -0.41014	 8.12988	 -3.19718	
18Z	 6.86363	 -0.775266	 5.111767	 -4.1327	

	     
Monthly	
Ave	 12.09575848	 -0.999690225	 12.06369542	 -3.5829905	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

15-May	 		 		 		 		
00Z	 8.834375	 -3.451425	 6.100425	 -4.111025	
06Z	 10.0927	 -2.27368	 8.71378	 -3.41764	
12Z	 9.8750667	 -2.4033	 10.78861667	 -3.4467167	
18Z	 11.52615	 -2.1844	 9.106825	 -3.217575	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	
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16-May	 		 		 		 		
00Z	 8.08885	 -2.3141	 6.9928	 -3.520933	
06Z	 15.739833	 -5.1007667	 9.7792667	 -5.669667	
12Z	 10.6567	 -2.388	 8.930316667	 -3.64968333	
18Z	 6.09478	 -2.3274	 6.4844	 -3.3495	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

17-May	 		 		 		 		
00Z	 9.90905	 -2.8715	 5.16255	 -3.7142	
06Z	 7.9955	 -2.91375	 5.05775	 -3.843475	
12Z	 6.4434	 -2.306525	 9.187475	 -3.61215	
18Z	 3.882575	 -1.268375	 6.720175	 -2.8431	

	     
Monthly	
Ave	 9.094914975	 -2.650268475	 7.75203167	

-
3.699638753	

 

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

15-Aug	 		 		 		 		
00Z	 10.89016	 -2.72186	 10.6562	 -3.96676	
06Z	 7.46786	 -3.49776	 5.68908	 -4.48582	
12Z	 7.22178	 -2.27686	 7.28274	 -3.96508	
18Z	 6.32755	 -1.60928	 5.9715	 -2.98031	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

16-Aug	 		 		 		 		
00Z	 8.05258	 -2.3992	 7.5083	 -3.459967	
06Z	 6.555	 -4.1313	 7.0744	 -4.906875	
12Z	 6.78771	 -2.12295	 8.4034	 -3.27648	
18Z	 8.64083	 -3.05825	 9.54555	 -4.12745	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

17-Aug	 		 		 		 		
00Z	 8.50773	 -2.35025	 7.7113	 -3.54655	
06Z	 6.379925	 -4.0407	 4.99435	 -5.114325	
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12Z	 4.87143	 -2.2058	 5.82258	 -3.32583	
18Z	 7.65712	 -2.06632	 7.87024	 -3.27482	

	     
Monthly	
Ave		 7.446639167	

-
2.706710833	 7.37747	

-
3.869188917	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

15-Nov	 		 		 		 		
00Z	 10.707933	 -0.7083	 12.12355	 -3.10611	
06Z	 11.31132	 -2.37938	 9.92518	 -3.1267	
12Z	 4.798825	 -1.45645	 6.01165	 -2.447475	
18Z	 8.16555	 -1.76235	 6.720625	 -3.344825	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

16-Nov	 		 		 		 		
00Z	 11.24144	 -2.0219	 11.91074	 -3.00874	
06Z	 7.14596	 -1.23978	 7.87892	 -2.41312	
12Z	 9.712725	 -2.931175	 10.2542	 -3.963975	
18Z	 7.4169333	 -2.647667	 7.343933	 -5.4537667	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

17-Nov	 		 		 		 		
00Z	 6.251675	 -2.011925	 6.990275	 -4.2147	
06Z	 5.9892	 -3.1132	 6.5313	 -5.2821667	
12Z	 4.1946	 -1.3681	 5.327675	 -3.966325	
18Z	 9.231875	 -0.694525	 10.63465	 -3.3114	

	     
Monthly	
Ave	 8.014003025	 -1.861229333	 8.471058167	

-
3.636608617	
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Appendix B: Intra-Seasonal Error Values 

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

15-Aug	 		 		 		 		
00Z	 10.89016	 -2.72186	 10.6562	 -3.96676	
06Z	 7.46786	 -3.49776	 5.68908	 -4.48582	
12Z	 7.22178	 -2.27686	 7.28274	 -3.96508	
18Z	 6.32755	 -1.60928	 5.9715	 -2.98031	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

16-Aug	 		 		 		 		
00Z	 8.05258	 -2.3992	 7.5083	 -3.459967	
06Z	 6.555	 -4.1313	 7.0744	 -4.906875	
12Z	 6.78771	 -2.12295	 8.4034	 -3.27648	
18Z	 8.64083	 -3.05825	 9.54555	 -4.12745	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

17-Aug	 		 		 		 		
00Z	 8.50773	 -2.35025	 7.7113	 -3.54655	
06Z	 6.379925	 -4.0407	 4.99435	 -5.114325	
12Z	 4.87143	 -2.2058	 5.82258	 -3.32583	
18Z	 7.65712	 -2.06632	 7.87024	 -3.27482	

	     
Monthly	
Ave		 7.446639167	

-
2.706710833	 7.37747	

-
3.869188917	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

19-Aug	 		 		 		 		
00Z	 6.12675	 -3.23305	 6.18105	 -4.53445	
06Z	 10.41225	 -2.0515	 9.24575	 -4.079025	
12Z	 14.12338	 -2.52144	 11.92456	 -3.85724	
18Z	 5.8485	 -1.8663	 5.9282	 -3.3032	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	
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20-Aug	 		 		 		 		
00Z	 7.7118	 -2.593175	 7.2431	 -4.1324	
06Z	 11.66976	 -2.18808	 8.17654	 -3.65398	
12Z	 14.236375	 -1.642875	 13.0058	 -1.339525	
18Z	 12.1234	 -2.20358	 9.036	 -3.958989	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

21-Aug	 		 		 		 		
00Z	 8.31698	 -1.8398	 4.9601	 -3.66856	
06Z	 8.440075	 -3.62572	 6.84955	 -4.0122	
12Z	 5.0617	 -1.779875	 4.96075	 -2.50495	
18Z	 10.3671	 -1.061125	 6.414325	 -2.787675	

	     
Monthly	
Ave	 9.536505833	 -2.21721	 7.82714375	

-
3.486016167	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

19-Aug	 		 		 		 		
00Z	 8.4213667	 -2.5625667	 7.6030333	 -3.5450667	
06Z	 8.8192333	 -4.74530	 9.457	 -5.7624	
12Z	 7.39665	 -2.824225	 7.448725	 -4.33495	
18Z	 11.436525	 -1.963775	 12.46775	 -3.1333	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

20-Aug	 		 		 		 		
00Z	 4.4409	 -3.1285	 4.8486	 -4.208075	
06Z	 14.459667	 -5.2213	 15.4282	 -6.2944667	
12Z	 5.82942	 -3.5486	 5.53806	 -4.45826	
18Z	 9.188833	 -1.63445	 5.3298667	 -2.98831667	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

21-Aug	 		 		 		 		
00Z	 9.15572	 -2.76912	 6.02964	 -3.70116	
06Z	 9.97908	 -2.38362	 9.52982	 -3.6669	
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12Z	 8.0648	 -3.555433	 7.3907667	 -4.4449	
18Z	 7.41685	 -2.5416	 7.8181	 -3.9465	

	     
Monthly	
Ave	 8.717420417	 -3.073207475	 8.240796808	

-
4.207024589	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

15-Sep	 		 		 		 		
00Z	 4.533475	 -2.268725	 6.566975	 -3.3462	
06Z	 6.79712	 -2.88980	 10.20418	 -4.37076	
12Z	 9.299675	 -2.240825	 11.705825	 -3.862325	
18Z	 2.88585	 -1.7103	 3.571075	 -3.55835	

	     
     

     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

16-Sep	 		 		 		 		
00Z	 11.41955	 -2.4986	 5.582975	 -3.85445	
06Z	 13.377533	 -0.6109	 4.0234	 -3.3807333	
12Z	 9.669225	 -1.720825	 12.09025	 -3.42315	
18Z	 5.4143	 -1.1867	 3.52133	 -2.420525	

	     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

17-Sep	 		 		 		 		
00Z	 6.580025	 -2.462725	 9.121325	 -4.1335	
06Z	 5.9563	 -2.293525	 3.7619	 -4.00465	
12Z	 12.82518	 -2.05852	 10.13548	 -2.99032	
18Z	 7.30458	 -1.92622	 8.1644	 -2.46308	

	     
Monthly	
Ave	 8.005234417	 -1.988972083	 7.370759583	

-
3.484003608	

 

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

26-Sep	 		 		 		 		
00Z	 4.332825	 -2.758425	 3.3867	 -3.2332	
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06Z	 14.05305	 -3.78008	 14.91275	 -4.979675	
12Z	 14.0741667	 -1.059225	 5.322133	 -0.86675	
18Z	 5.45565	 -1.7792	 6.3457	 -2.570025	

	     
     

     

		
GDI	Location	
Error	

GDI	Area	
Error		

KI	Location	
Error	 KI	Area	Error	

27-Sep	 		 		 		 		
00Z	 5.902075	 -1.707925	 7.6313	 -3.8174	
06Z	 7.6262	 -2.0818	 8.3298	 -3.670575	
12Z	 16.4456	 -1.5360667	 9.2063667	 -3.6042	
18Z	 11.77142	 -0.6653	 3.76238	 -1.8244	

	     
Monthly	
Ave	 9.957623338	 -1.921002088	 7.362141213	

-
3.070778125	
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Appendix C: Potential GDI-A Error Values 

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

15-Aug	 		 		 		 		
00Z	 10.89016	 -2.72186	 10.6562	 -3.96676	
06Z	 7.46786	 -3.49776	 5.68908	 -4.48582	
12Z	 7.22178	 -2.27686	 7.28274	 -3.96508	
18Z	 6.32755	 -1.60928	 5.9715	 -2.98031	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

16-Aug	 		 		 		 		
00Z	 8.05258	 -2.3992	 7.5083	 -3.459967	
06Z	 6.555	 -4.1313	 7.0744	 -4.906875	
12Z	 6.78771	 -2.12295	 8.4034	 -3.27648	
18Z	 8.64083	 -3.05825	 9.54555	 -4.12745	

	     

		
GDI	Location	
Error	

GDI	Area	
Error	

KI	Location	
Error	 KI	Area	Error	

17-Aug	 		 		 		 		
00Z	 8.50773	 -2.35025	 7.7113	 -3.54655	
06Z	 6.379925	 -4.0407	 4.99435	 -5.114325	
12Z	 4.87143	 -2.2058	 5.82258	 -3.32583	
18Z	 7.65712	 -2.06632	 7.87024	 -3.27482	

	     
Monthly	
Ave		 7.446639167	

-
2.706710833	 7.37747	

-
3.869188917	

 

EPTP	900	
Location	
Error	 Area	Error	 EPTP	850	

Location	
Error	 Area	Error	

		 8.78908	 -3.5812	 		 8.64528	 -3.46286	
		 5.3191	 -3.636228	 		 6.4042	 -3.5437	
		 7.28018	 -2.86374	 		 7.17472	 -2.98556	
		 5.8474	 -1.989	 		 6.3032	 -2.08565	
		 		 		 		 		 		

900	
Location	
Error	 Area	Error	 850	

Location	
Error	 Area	Error	

		 5.63798	 -2.52388	 		 6.12185	 -2.598767	
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		 6.660325	 -0.48815	 		 5.969075	 -4.126225	
		 5.977367	 -2.42625	 		 6.01711	 -2.45648	
		 9.813775	 -3.260875	 		 9.8536	 -3.336275	

	      

 6.915650875	
-

2.596165375	 	 7.061129375	
-

3.074439625	
 

EPTP	800	
Location	
Error	 Area	Error	 EPTP	700	

Location	
Error	 Area	Error	

		 7.66822	 -3.45798	 		 10.09388	 -3.58045	
		 6.65866	 -3.26712	 		 6.371	 -3.56802	
		 7.6743	 -2.86554	 		 8.27412	 -2.05014	
		 6.1989833	 -1.991633	 		 6.69455	 -2.18201	
		 		 		 		 		 		

800	
Location	
Error	 Area	Error	 700	

Location	
Error	 Area	Error	

		 6.63681667	 -2.3391667	 		 7.52316	 -2.417566	
		 5.786675	 -3.918275	 		 6.765925	 -4.27785	
		 6.0244	 -2.346	 		 6.1287667	 -2.5763	
		 9.464725	 -3.1714775	 		 8.73465	 -3.332325	
		 		 		 		 		 		

		 7.014097496	
-

2.919649025	 		 7.573256463	
-

2.998082625	
 
EPTP	
600_35	

Location	
Error	 Area	Error	

EPTP	
600_40	

Location	
Error	 Area	Error	

		 10.93578	 -2.29252	 		 11.29442	 -2.65206	
		 6.90276	 -3.43622	 		 8.55274	 -2.9851	
		 7.4095	 -2.34388	 		 10.02268	 -2.70344	
		 8.79016667	 -1.639266	 		 9.2085	 -1.1923	
		 		 		 		 		 		

		
Location	
Error	 Area	Error	 600	

Location	
Error	 Area	Error	

		 7.79565	 -2.228667	 		 8.1281667	 -2.0182	
		 10.08668	 -3.905025	 		 12.662425	 -3.122375	
		 7.6095	 -2.10721	 		 7.41095	 -1.7656	
		 10.16225	 -3.039175	 		 10.36375	 -2.867625	
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		 8.711535834	
-

2.623995375	 		 9.705453963	
-

2.4133375	
 

RH	800	
Location	
error	 Area	Error	 RH	700	

Location	
error	 Area	Error	

		 10.11674	 -3.30856	 		 9.92444	 -1.367266	
		 4.26862	 -2.84968	 		 5.97208	 -3.11846	
		 7.39792	 -2.7555	 		 7.213426	 -2.63278	
		 6.93046	 -1.77158	 		 4.7723833	 -2.0375333	

800	
Location	
error	 Area	Error	 700	

Location	
error	 Area	Error	

		 8.3069	 -2.35285	 		 7.675116667	 -2.3519	
		 6.830175	 -4.16435	 		 6.24905	 -3.54635	
		 7.6768	 -2.133	 		 7.69071667	 -2.08151	
		 8.00645	 -2.5817	 		 7.03435	 -2.8906	

800	
Location	
error	 Area	Error	 700	

Location	
error	 Area	Error	

		 3.93765	 -2.3526	 		 7.47215	
-

2.179716667	
		 5.7847	 -3.835225	 		 4.73625	 -4.054875	
		 7.1702	 -2.38105	 		 6.6486	 -2.1949	
		 7.12354	 -1.73988	 		 6.94794	 -2.00568	

	    		 		

	 6.962512917	
-

2.685497917	 		 6.86137522	
-

2.538464247	
 

RH	300	
Location	
error	 Area	Error	

		 8.62396	 -3.2623	
		 7.15038	 -2.47214	
		 6.2202	 -1.97236	
		 4.76314	 -1.39088	

300	
Location	
error	 Area	Error	

		 6.7942333	 -1.584933	
		 6.298375	 -2.541825	
		 10.26023	 -1.50791667	
		 7.776375	 -1.4611	

300	
Location	
error	 Area	Error	

		 8.48085	 -1.81885	
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		 5.0708	 -3.177575	
		 10.8433	 -1.5938833	
		 7.7226	 -1.6409	

	   

 7.500370275	
-

2.035388581	
 

Ave	VV		
Location	
Error	 Area	Error	

		 9.9494	 -3.52732	
		 12.76124	 -3.0932	
		 7.03582	 -2.04088	
		 6.08304	 -1.64176	

Ave	VV	
Location	
Error	 Area	Error	

		 8.15811667	 -1.818	
		 6.483875	 -3.479225	
		 8.1085667	 -1.56453	
		 8.293725	 -2.8104	

Ave	VV	
Location	
Error	 Area	Error	

		 8.5835333	 -2.13625	
		 7.71885	 -3.9123	
		 6.359833	 -2.0238667	
		 7.80624	 -1.81546	

	   

 8.111853306	
-

2.488599308	
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